Eu essencialmente tenho uma série de valores como este: a matriz acima é simplificada demais, estou coletando 1 valor por milissegundo em meu código real e preciso processar a saída em um algoritmo que escrevi para encontrar o pico mais próximo antes de um ponto no tempo. Minha lógica falha porque no meu exemplo acima, 0.36 é o pico real, mas meu algoritmo olhava para trás e veria o último número 0.25 como o pico, pois há uma diminuição para 0,24 antes dele. O objetivo é levar esses valores e aplicar um algoritmo para eles, que os suavizará um pouco para que eu tenha mais valores lineares. (Ie: Id como os meus resultados serem curvy, não jaggedy) Eu fui dito para aplicar um filtro exponencial de média móvel aos meus valores. Como posso fazer isso. É muito difícil para mim ler equações matemáticas, eu ligo muito melhor com o código. Como faço para processar valores na minha matriz, aplicando um cálculo exponencial da média móvel para os fazer sair 8 de fevereiro 12 às 20:27 Para calcular uma média móvel exponencial. Você precisa manter algum estado ao redor e você precisa de um parâmetro de ajuste. Isso exige uma pequena classe (supondo que você esteja usando o Java 5 ou posterior): Instantiate com o parâmetro de decaimento que você deseja (pode ter uma afinação deve estar entre 0 e 1) e depois use a média () para filtrar. Ao ler uma página sobre alguma recorrência matemática, tudo o que você realmente precisa saber ao transformá-lo em código é que os matemáticos gostam de escrever índices em matrizes e seqüências com subíndices. (Contudo, algumas outras notações, o que não ajuda.) No entanto, o EMA é bastante simples, pois você só precisa se lembrar de um valor antigo, não é necessário nenhum arrays de estados complicados. Respondeu 8 de fevereiro às 20:42 TKKocheran: praticamente. Não é bom quando as coisas podem ser simples (Se começar com uma nova seqüência, obtenha uma nova média). Observe que os primeiros termos na seqüência média saltarão em torno de um bit devido a efeitos de limites, mas você obtém aqueles com outras médias móveis também. No entanto, uma boa vantagem é que você pode envolver a lógica média móvel na média e experimentar sem perturbar demais o seu programa. Ndash Donal Fellows 9 de fevereiro às 0:06 Estou tendo dificuldade em entender suas perguntas, mas vou tentar responder de qualquer maneira. 1) Se o seu algoritmo encontrou 0,25 em vez de 0,36, então está errado. É errado porque assume um aumento ou diminuição monotônico (que sempre está subindo ou sempre está descendo). A menos que você tenha TODOS OS seus dados, seus pontos de dados --- como você os apresenta --- são não-lineares. Se você realmente quer encontrar o valor máximo entre dois pontos no tempo, então corte sua matriz de tmin para tmax e encontre o máximo desse subarray. 2) Agora, o conceito de médias móveis é muito simples: imagine que eu tenho a seguinte lista: 1.4, 1.5, 1.4, 1.5, 1.5. Eu posso suavizá-lo tomando a média de dois números: 1.45, 1.45, 1.45, 1.5. Observe que o primeiro número é a média de 1,5 e 1,4 (segundo e primeiro número), a segunda (nova lista) é a média de 1,4 e 1,5 (terceira e segunda lista antiga) a terceira (nova lista) a média de 1,5 e 1,4 (Quarto e terceiro), e assim por diante. Eu poderia ter feito período três ou quatro, ou n. Observe como os dados são muito mais suaves. Uma boa maneira de ver as médias móveis no trabalho é ir para o Google Finance, selecionar um estoque (tente Tesla Motors bastante volátil (TSLA)) e clique em técnicas na parte inferior do gráfico. Selecione a média móvel com um período determinado e uma média móvel exponencial para comparar suas diferenças. A média móvel exponencial é apenas uma outra elaboração deste, mas considera os dados anteriores menos do que os novos dados, é uma maneira de polarizar o alisamento na parte de trás. Leia a entrada da Wikipedia. Então, isso é mais um comentário do que uma resposta, mas a pequena caixa de comentários foi apenas pequena. Boa sorte. Se você estiver tendo problemas com a matemática, você poderia ir com uma média móvel simples em vez de exponencial. Então, a saída que você obtém seria os últimos x termos divididos por x. Pseudocódigo não testado: note que você precisará lidar com as partes de início e fim dos dados, pois claramente você não pode usar os 5 últimos termos quando estiver no seu segundo ponto de dados. Além disso, existem formas mais eficientes de calcular essa média móvel (soma sumária - a mais nova), mas é para obter o conceito do que está acontecendo. Respondeu 8 de fevereiro às 20:41 Sua resposta 2016 Stack Exchange, IncDownload movAv. m (veja também movAv2 - uma versão atualizada que permite a ponderação) Descrição O Matlab inclui funções chamadas movavg e tsmovavg (média móvel em séries temporais) na caixa de ferramentas financeira, movAv É projetado para replicar a funcionalidade básica destes. O código aqui fornece um bom exemplo de gerenciar índices dentro de loops, o que pode ser confuso para começar. Eu deliberadamente mantive o código curto e simples para manter esse processo claro. MovAv executa uma média móvel simples que pode ser usada para recuperar dados ruidosos em algumas situações. Ele funciona tomando uma média da entrada (y) sobre uma janela de tempo deslizante, cujo tamanho é especificado por n. Quanto maior for n, maior a quantidade de suavização do efeito de n é relativa ao comprimento do vetor de entrada y. E efetivamente (bem, tipo de) cria um filtro de freqüência de passagem baixa - veja a seção de exemplos e considerações. Como a quantidade de suavização fornecida por cada valor de n é relativa ao comprimento do vetor de entrada, vale a pena testar valores diferentes para ver o que é apropriado. Lembre-se também de que n pontos são perdidos em cada média se n for 100, os primeiros 99 pontos do vetor de entrada não contêm dados suficientes para uma média de 100pt. Isso pode ser evitado um pouco ao empilhar médias, por exemplo, o código e o gráfico abaixo comparam uma série de médias de largura de comprimento diferentes. Observe o quão suave 1010pt é comparado a uma única média de 20pt. Em ambos os casos, 20 pontos de dados são perdidos no total. Criar xaxis x1: 0.01: 5 Gerar ruídos de ruído Reps 4 reppl de ruído (randn (1, ceil (numel (x) / noiseReps)), noiseReps, 1) ruim remodelado (ruído, 1, comprimento (ruído) noiseReps) Gerar ydata noise yexp (X) 10noise (1: comprimento (x)) Médias Perfrom: y2 movAv (y, 10) 10 pt y3 movAv (y2, 10) 1010 pt y4 movAv (y, 20) 20 pt y5 movAv (y, 40) 40 Pt y6 movAv (y, 100) 100 pt Plot figura trama (x, y, y2, y3, y4, y5, y6) lenda (dados brutos, 10pt média móvel, 1010pt, 20pt, 40pt, 100pt) xlabel (x) ylabel (Y) título (Comparação de médias móveis) função de transmissão de código movAv. m saída movAv (y, n) A primeira linha define o nome das funções, entradas e saídas. A entrada x deve ser um vetor de dados para executar a média em, n deve ser o número de pontos para executar a média sobre a saída irá conter a média de dados retornados pela função. Preallocate output outputNaN (1, numel (y)) Encontre o ponto médio de n round do midPoint (n / 2) O trabalho principal da função é feito no loop for, mas antes de iniciar duas coisas são preparadas. Em primeiro lugar, o resultado é pré-alocado como NaNs, isso serviu para dois propósitos. Em primeiro lugar, a pré-alocação geralmente é uma boa prática, pois reduz a manipulação de memória que a Matlab precisa fazer, em segundo lugar, torna muito fácil colocar os dados médios em uma saída do mesmo tamanho que o vetor de entrada. Isso significa que o mesmo xaxis pode ser usado mais tarde para ambos, o que é conveniente para plotar, alternativamente, os NaNs podem ser removidos mais tarde em uma linha de código (saída de saída (O midPoint variável será usado para alinhar os dados no vetor de saída. N 10, 10 pontos serão perdidos porque, para os primeiros 9 pontos do vetor de entrada, não há dados suficientes para ter uma média de 10 pontos. Como o resultado será menor do que a entrada, ele precisa estar alinhado corretamente. O MidPoint irá Ser usado para que uma quantidade igual de dados seja perdida no início e no final e a entrada é mantida alinhada com a saída pelos buffers de NaN criados ao pré-alocar a saída. Para um comprimento de 1: comprimento (y) - n Alcance do índice para levar a média Sobre (a: b) ban Calcule a média de saída (amidPoint) mean (y (a: b)) end No próprio loop for, uma média é tomada em cada segmento consecutivo da entrada. O loop será executado para a. Which is Definido como 1 até o comprimento da entrada (y), menos os dados que serão perdidos (n). Se a entrada for 100 pontos, Ng e n é 10, o loop será executado a partir de (a) 1 a 90. Isso significa que a fornece o primeiro índice do segmento a ser calculado como média. O segundo índice (b) é simplesmente um-1. Então, na primeira iteração, a1. N10. Então b 11-1 10. A primeira média é tomada sobre y (a: b). Ou x (1:10). A média desse segmento, que é um valor único, é armazenada na saída no índice amidPoint. Ou 156. Na segunda iteração, a2. B 210-1 11. Então a média é tomada em x (2:11) e armazenada na saída (7). Na última iteração do loop para uma entrada de comprimento 100, a91. B 9010-1 100 para que a média seja tomada sobre x (91: 100) e armazenada na saída (95). Isso deixa a saída com um total de n (10) valores de NaN no índice (1: 5) e (96: 100). Exemplos e considerações As médias móveis são úteis em algumas situações, mas elas nem sempre são a melhor escolha. Aqui estão dois exemplos em que eles não são necessariamente ótimos. Calibração do microfone Este conjunto de dados representa os níveis de cada freqüência produzida por um alto-falante e registrada por um microfone com uma resposta linear conhecida. A saída do alto-falante varia com a freqüência, mas podemos corrigir esta variação com os dados de calibração - a saída pode ser ajustada em nível para atender as flutuações na calibração. Observe que os dados brutos são ruidosos - isso significa que uma pequena alteração na freqüência parece exigir uma grande, errática, mudança no nível a ser considerada. Isso é realista Ou isso é um produto do ambiente de gravação. É razoável, neste caso, aplicar uma média móvel que suaviza a curva de nível / freqüência para fornecer uma curva de calibração que é ligeiramente menos errática. Mas por que isso não é ótimo neste exemplo Mais dados seriam melhores - as calibrações múltiplas correm em média juntos destruirão o ruído no sistema (desde que seja aleatório) e proporcionem uma curva com menos detalhes sutis perdidos. A média móvel só pode se aproximar disso, e pode remover alguns mergulhos de freqüência mais altos e picos da curva que realmente existem. Ondas sinusoidais A utilização de uma média móvel em ondas senoticas destaca dois pontos: a questão geral de escolher um número razoável de pontos para realizar a média. É simples, mas existem métodos de análise de sinal mais efetivos que a média de sinais oscilantes no domínio do tempo. Neste gráfico, a onda senoidal original é plotada em azul. O ruído é adicionado e plotado como a curva laranja. Uma média móvel é realizada em diferentes números de pontos para ver se a onda original pode ser recuperada. 5 e 10 pontos proporcionam resultados razoáveis, mas não eliminam completamente o ruído, onde, à medida que um número maior de pontos começa a perder detalhes de amplitude, à medida que a média se estende por diferentes fases (lembre-se da onda oscilar em torno de zero e significar (-1 1) 0) . Um enfoque alternativo seria a construção de um filtro de passagem baixa que possa ser aplicado ao sinal no domínio da frequência. Eu não vou entrar em detalhes, pois vai além do escopo deste artigo, mas como o ruído é uma freqüência consideravelmente maior do que a freqüência fundamental das ondas, seria bastante fácil, neste caso, construir um filtro de passagem baixa do que remover a alta freqüência barulho.
No comments:
Post a Comment